L1MCCAforSSVEP_Demo​.zip

Version 1.1.0.0 (4,75 MB) von Yu Zhang
This code is a demo to show L1MCCA vs CCA for SSVEP recognition.
1,1K Downloads
Aktualisiert 15. Aug 2014

Lizenz anzeigen

This code is a demo to show L1-regularized multiway canonical correlation analysis (L1MCCA) can outperform CCA for SSVEP recognition in BCI.
To see the results, you just run the m file titled "L1MCCAforSSVEP_Demo".
For more details, please see the paper:
Y. Zhang, G. Zhou, J. Jin, M. Wang, X. Wang, A. Cichocki. L1-regularized multiway canonical correlation analysis for SSVEP-based BCI. IEEE Trans. Neural Syst. Rehabil. Eng., vol. 21, no. 6, pp. 887-896, 2013.
If you have any question about this code, please do not hesitate to contact me:
zhangyu0112@gmail.com

Zitieren als

Yu Zhang (2025). L1MCCAforSSVEP_Demo.zip (https://de.mathworks.com/matlabcentral/fileexchange/47496-l1mccaforssvep_demo-zip), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2012a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.1.0.0

Note: This demo requires the tensor_toolbox developed by Kolda that can be download at: (http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.5.html)

1.0.0.0