bin_classification_​toolbox.zip

A toolbox used to learn linear binary classifiers with different loss functions.
513 Downloads
Aktualisiert 14. Mai 2014

Lizenz anzeigen

This toolbox is used to learn linear binary classifiers through regularized risk minimization.
Specifically, it assumes a linear binary classifier y=sign(w'x+b), and the parameters are learned by minimizing the following objective function:
w*,b*=argmin 1/n sum l(y_i,w'x_i+b) + lambda/2*w'w
We use conjugate gradient descent method to solve the optimization problem.
Features:
1. The classifier can be learned using different loss functions such as square loss and logistic loss or any user defined loss.
2. The regularization parameter can be tuned through repeated k-fold cross validation or a separate validation set.
3. Regularization parameter can be tuned based on different criteria such as overall accuracy, average accuracy, average precision and area under roc curve
Note that if you want to use average precision and area under roc curve, make sure vlFeat toolbox (http://www.vlfeat.org/) is downloaded and included in the path

Zitieren als

Zach Ziheng Wang (2024). bin_classification_toolbox.zip (https://www.mathworks.com/matlabcentral/fileexchange/46614-bin_classification_toolbox-zip), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2012a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und MATLAB Answers
Quellenangaben

Inspiriert: Truss displacement based on FEM

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.1.0.0

demo figure changed

1.0.0.0