A solution to the Maze problem with Dijkstra
The general idea:
1) Think of every pixel in the maze as node on a connected graph
2) Define the walls as having high weights. This ensures that walls will act as separators
3) Use a 4-connected neighborhood to link adjacent pixels/nodes
4) Convert the maze image into a sparse Distance matrix(similar to an adjacency matrix with weights instead of ones).
5) Use graphshortestpath() from the bioinformatics toolbox to find the shortest path
Zitieren als
Y Simson (2026). A solution to the Maze problem with Dijkstra (https://de.mathworks.com/matlabcentral/fileexchange/46072-a-solution-to-the-maze-problem-with-dijkstra), MATLAB Central File Exchange. Abgerufen.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxKategorien
- Image Processing and Computer Vision > Image Processing Toolbox > Display and Exploration >
- MATLAB > Mathematics > Graph and Network Algorithms > Modify Nodes and Edges > Dijkstra algorithm >
Tags
Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
| Version | Veröffentlicht | Versionshinweise | |
|---|---|---|---|
| 1.1.0.0 | Fixed a bug and added support to im2graph() function to support 8 as well as 4 connected neighborhoods |
||
| 1.0.0.0 |
