Model-based Policy Iteration Algorithm for Deterministic Cleaning Robot

An Example for Reinforcement Learning using Model-based Policy iteration Approach
849 Downloads
Aktualisiert 17. Mär 2014

Lizenz anzeigen

Model-based policy iteration Algorithm for Deterministic Cleaning Robot. This code is a very simple implementation of a policy iteration algorithm, which makes it a useful start point for beginners in the field of Reinforcement learning and dynamic programming.
The deterministic cleaning-robot MDP: a cleaning robot has to collect a used can also has to recharge its batteries. the state describes the position of the robot and the action describes the direction of motion. The robot can move to the left or to the right. The first (1) and the final (6) states are the terminal states. The goal is to find an optimal policy that maximizes the return from any initial state. Here the policy-iteration (model-based policy iteration DP). Reference: Algorithm 2-5, from:
@book{busoniu2010reinforcement,
title={Reinforcement learning and dynamic programming using function approximators},
author={Busoniu, Lucian and Babuska, Robert and De Schutter, Bart and Ernst, Damien},
year={2010},
publisher={CRC Press}
}

Zitieren als

Reza Ahmadzadeh (2026). Model-based Policy Iteration Algorithm for Deterministic Cleaning Robot (https://de.mathworks.com/matlabcentral/fileexchange/45904-model-based-policy-iteration-algorithm-for-deterministic-cleaning-robot), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2010a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und MATLAB Answers
Communitys
Mehrere Dateien sind in der  Power Electronics Control Community erhältlich
Version Veröffentlicht Versionshinweise
1.0.0.0