Computing common zeros of two bivariate functions

For bivariate functions f(x,y) and g(x,y), compute values of (x,y) such that f(x,y)=g(x,y)=0
346 Downloads
Aktualisiert 25. Okt 2013

Lizenz anzeigen

r = rootsb(f,g,xydomain)
finds the common zeros of two bivariate functions f and g in the domain xydomain (4-element vector), which are given as function handles.

This code exists besides roots(f,g) in chebfun2 (which does essentially the same task) because it is sometimes better for accuracy to resample the functions when working in a subdivided, smaller domain.

If xydomain is not provided, it defaults to [-1 1 -1 1].

test.m runs a simple test and shows the plots of the solution along with the zero curves. The solutions should be the intersections of the curves.

This code always employs the algorithm based on the hidden variable resultant method. For the algorithmic details, see

[1] Y. Nakatsukasa, V. Noferini, and A. Townsend, Computing the common zeros of two bivariate functions via Bezout resultants, submitted (2013).
http://eprints.maths.ox.ac.uk/1704/

Zitieren als

Yuji Nakatsukasa (2025). Computing common zeros of two bivariate functions (https://de.mathworks.com/matlabcentral/fileexchange/44084-computing-common-zeros-of-two-bivariate-functions), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2013a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0.0.0