Matrix exponential times a vector

Computes EXPM(tA)b, without explicitly computing the matrix exponential, by Leja interpolation.
539 Downloads
Aktualisiert 26. Jan 2017

Lizenz anzeigen

Attention this code is out of date: For the current versions >2.* of this code based on
M. Caliari, P. Kandolf, A. Ostermann, S. Rainer: The Leja method revisited: backward error analysis for the matrix exponential, SIAM Journal on Scientific Computation, 38 (3), A1639-A1661(2016)

please visit: https://bitbucket.org/expleja/expleja

This submission computes the action of the matrix exponential on a vector without explicitly computing the matrix exponential. It is designed for sparse normal or non-normal matrices with a spectrum in the left half of the complex plane.
A minimal test example is included in the help.

Details of the underlying algorithm can be found in:
M. Caliari, P. Kandolf, A. Ostermann and S. Rainer, Comparison of software for computing the action of the matrix exponential. BIT, 2013, DOI: 10.1007/s10543-013-0446-0

Zitieren als

Peter Kandolf (2025). Matrix exponential times a vector (https://de.mathworks.com/matlabcentral/fileexchange/44039-matrix-exponential-times-a-vector), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2012a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Matrix Exponential finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.3.0.0

Attention this code is out of date: For the current versions >2.* please visit: https://bitbucket.org/expleja/expleja
Fixed a but that might occur during the substep selection if the first guess is bigger than the allowed number of substeps.

1.2.0.0

Update of the sub function gersh, with error correction for pure imaginary matrix.

1.1.0.0

Updated the exptaylordd method. This version is faster in the current MATLAB version. The old version of this function is still included as a comment.

1.0.0.0