Auto-Correlation, Partial Auto-Correlation, Cross Correlation and Partial Cross Correlation Function

Version 1.1.0.0 (3,08 KB) von Adel Fazel
This allows evaluation of ACC, PACC, CCF, PCCF as the function of lags.
1,4K Downloads
Aktualisiert 23. Aug 2013

Lizenz anzeigen

Time series analysis can be defined as prediction of future values of a random process given previous values. An important part of modelling is the decision of how many of the antecedent values should be used to predict the future. Auto-correlation function demonstrates the correlation coefficient between two series, original series and the lagged series. AC coefficients often die slowly. PACF determines the Correlation coefficient between original and lagged series given that the intermediate values are known. A note: These two should serve as the first step towards modelling. Please see readme for additional information and warranty.
For two processes, Cross-Crorrelation and Partial Cross correlations are added as well.

Zitieren als

Adel Fazel (2026). Auto-Correlation, Partial Auto-Correlation, Cross Correlation and Partial Cross Correlation Function (https://de.mathworks.com/matlabcentral/fileexchange/43172-auto-correlation-partial-auto-correlation-cross-correlation-and-partial-cross-correlation-function), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2012a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Conditional Mean Models finden Sie in Help Center und MATLAB Answers
Version Veröffentlicht Versionshinweise
1.1.0.0

Cross-Correlation is added for enhanced functionality

1.0.0.0