PSD (Power Spectral Density), and Amplitude Spectrum with adjusted FFT

FFT computes PSD and one sided amplitude spectrum Y[f] of 1d signal
5,8K Downloads
Aktualisiert 4. Sep 2013

Lizenz anzeigen

Function [fy]=FFT(y,Fs)

1)computes the Power spectral density and Amplitude spectrum (P(f),F(f))
of 1d signal y(t) with sample rate Fs (Nyquist rate) which is known% apriori. The results are plotted in 3 figures which correspond to simple
PSD,logarithmic PSD (dB) and Amplitude Specturm respectively.
_____________
Ampitude(f) = \/ PSD(f)

2)The usefulness of this function is the adjustment of the frequency axis.

3)The fast Fourier transform is computed with Matlab built-in function
fft, but for signals whose lengths <1000 points, one can use the nested
function y=Fast_Fourier_Transform(X,N) .

Demo :

Fs=800;
Tf=2;
t=0:1/Fs:Tf;
f=[40 75];
Amp=[4.5 9.22];
sigma=1.33;
y=Amp(1)*exp(j*2*pi*t*f(1))
+Amp(2)*exp(j*2*pi*t*f(2));
N=(sigma/sqrt(2))* (randn(size(t))+j*randn(size(t)));
y=y+N;
figure, plot(t,y),xlabel('time (s)'),ylabel('Voltage (v)'),
title(strcat('Signal corrupted with AWGN, \sigma=',num2str(sigma))),
fy=FFT(y,Fs);

in the M-file Demo_FFT:
1st Part : we compute the spectrum of sinusoidal signal Y(t) with frequency Fc
2nd Part : FFT[Y²(t)]

The demo is adjusted with sample rate Fs>=4*Fc.

Zitieren als

Youssef Khmou (2024). PSD (Power Spectral Density), and Amplitude Spectrum with adjusted FFT (https://www.mathworks.com/matlabcentral/fileexchange/40002-psd-power-spectral-density-and-amplitude-spectrum-with-adjusted-fft), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2007a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Fourier Analysis and Filtering finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.3.0.0

errata : figure 2 is changed from semilogy(Frequency, Power) to 10*log10(Frequency, 10*log10(Power)) in Decibel .

1.0.0.0