Symmetric eigenvalue decomposition and the SVD

Eigendecomposition of a symmetric matrix or the singular value decomposition of an arbitrary matrix
2K Downloads
Aktualisiert 23. Mai 2012

Lizenz anzeigen

This submission contains functions for computing the eigenvalue decomposition of a symmetric matrix (QDWHEIG.M) and the singular value decomposition (QDWHSVD.M) by efficient and stable algorithms based on spectral divide-and-conquer. The computed results tend to be more accurate than those given by MATLAB's built-in functions EIG.M and SVD.M.

Function TEST.M runs a simple test of the codes.

Details on the underlying algorithms can be found in

Y. Nakatsukasa and N. J. Higham. Stable and Efficient Spectral Divide and Conquer Algorithms for the Symmetric Eigenvalue Decomposition and the SVD. MIMS EPrint 2012.52, The University of Manchester, May 2012.
http://eprints.ma.man.ac.uk/1824

Zitieren als

Yuji Nakatsukasa (2025). Symmetric eigenvalue decomposition and the SVD (https://de.mathworks.com/matlabcentral/fileexchange/36830-symmetric-eigenvalue-decomposition-and-the-svd), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2012a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Eigenvalues & Eigenvectors finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0.0.0