2D polynomial fitting with SVD

Fits a polynomial f(x,y) to best fit the data points z using SVD.
1,6K Downloads
Aktualisiert 14. Jul 2011

Lizenz anzeigen

Use coeffs = fit2dPolySVD(x, y, z, order) to fit a polynomial of x and y so that it provides a best fit to the data z.
Uses SVD which is robust even if the data is degenerate. Will always produce a least-squares best fit to the data even if the data is overspecified or underspecified.
x, y, z are column vectors specifying the points to be fitted.
The three vectors must be the same length.
Order is the order of the polynomial to fit.
Coeffs returns the coefficients of the polynomial. These are in increasing power of y for each increasing power of x, e.g. for order 2:
zbar = coeffs(1) + coeffs(2).*y + coeffs(3).*y^2 + coeffs(4).*x + coeffs(5).*x.*y + coeffs(6).*x^2

Use eval2dPoly(x,y,coeffs) to evaluate the polynomial at any (x,y) points.

If the data is underspecified then the LOWER order coefficients will come out as zero, the solution being a fit using higher orders; use a lower order fit for a more obvious solution in this case.

Zitieren als

Richard Whitehead (2026). 2D polynomial fitting with SVD (https://de.mathworks.com/matlabcentral/fileexchange/31636-2d-polynomial-fitting-with-svd), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2011a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Eigenvalues finden Sie in Help Center und MATLAB Answers
Quellenangaben

Inspiriert von: 2D Weighted Polynomial Fitting and Evaluation

Version Veröffentlicht Versionshinweise
1.4.0.0

Minor change to description

1.3.0.0

Fixed typo in error reporting lines

1.2.0.0

Scaling ignored negative values

1.1.0.0

Corrected typos in description

1.0.0.0