2D polynomial fitting with SVD
Use coeffs = fit2dPolySVD(x, y, z, order) to fit a polynomial of x and y so that it provides a best fit to the data z.
Uses SVD which is robust even if the data is degenerate. Will always produce a least-squares best fit to the data even if the data is overspecified or underspecified.
x, y, z are column vectors specifying the points to be fitted.
The three vectors must be the same length.
Order is the order of the polynomial to fit.
Coeffs returns the coefficients of the polynomial. These are in increasing power of y for each increasing power of x, e.g. for order 2:
zbar = coeffs(1) + coeffs(2).*y + coeffs(3).*y^2 + coeffs(4).*x + coeffs(5).*x.*y + coeffs(6).*x^2
Use eval2dPoly(x,y,coeffs) to evaluate the polynomial at any (x,y) points.
If the data is underspecified then the LOWER order coefficients will come out as zero, the solution being a fit using higher orders; use a lower order fit for a more obvious solution in this case.
Zitieren als
Richard Whitehead (2026). 2D polynomial fitting with SVD (https://de.mathworks.com/matlabcentral/fileexchange/31636-2d-polynomial-fitting-with-svd), MATLAB Central File Exchange. Abgerufen.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxKategorien
- MATLAB > Mathematics > Linear Algebra > Eigenvalues >
Tags
Quellenangaben
Inspiriert von: 2D Weighted Polynomial Fitting and Evaluation
Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
| Version | Veröffentlicht | Versionshinweise | |
|---|---|---|---|
| 1.4.0.0 | Minor change to description |
||
| 1.3.0.0 | Fixed typo in error reporting lines |
||
| 1.2.0.0 | Scaling ignored negative values |
||
| 1.1.0.0 | Corrected typos in description |
||
| 1.0.0.0 |
