Constrained MOO using GA (ver. 2)

Version 1.5 (2,05 KB) von Sam Elshamy
Solving a simple MOO problem using Genetic Algorithms (GA)
2,4K Downloads
Aktualisiert 30. Nov 2014

Lizenz anzeigen

This code is a demo of using Genetic Algorithms (GA) to solve a simple constrained multi-objective optimization (MOO) problem.
The objective is to find the pareto front of the MOO problem defined as follows:
Maximize:
f1(X) = 2*x1 + 3*x2
f2(X) = 2/x1 + 1/x2
such that:
10 > x1 > 20
20 > x2 > 30

The set of non-dominated solutions is plotted in the objective space, and displayed in the console.

Zitieren als

Sam Elshamy (2024). Constrained MOO using GA (ver. 2) (https://www.mathworks.com/matlabcentral/fileexchange/29806-constrained-moo-using-ga-ver-2), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2009a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.5

Now available in Toolbox format.

1.4.0.0

Update: Bugs in line 68 and 69 and others are now fixed. Thanks to Yu-Yun

1.0.0.0