Constrained MOO using GA (ver. 2)
This code is a demo of using Genetic Algorithms (GA) to solve a simple constrained multi-objective optimization (MOO) problem.
The objective is to find the pareto front of the MOO problem defined as follows:
Maximize:
f1(X) = 2*x1 + 3*x2
f2(X) = 2/x1 + 1/x2
such that:
10 > x1 > 20
20 > x2 > 30
The set of non-dominated solutions is plotted in the objective space, and displayed in the console.
Zitieren als
Sam Elshamy (2024). Constrained MOO using GA (ver. 2) (https://www.mathworks.com/matlabcentral/fileexchange/29806-constrained-moo-using-ga-ver-2), MATLAB Central File Exchange. Abgerufen.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxKategorien
- Mathematics and Optimization > Global Optimization Toolbox > Genetic Algorithm >
- Mathematics and Optimization > Global Optimization Toolbox > Multiobjective Optimization >
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
Version | Veröffentlicht | Versionshinweise | |
---|---|---|---|
1.5 | Now available in Toolbox format. |
|
|
1.4.0.0 | Update: Bugs in line 68 and 69 and others are now fixed. Thanks to Yu-Yun |
||
1.0.0.0 |