Constrained MOO using GA (ver. 2)

Version 1.5 (2,05 KB) von Sam Elshamy
Solving a simple MOO problem using Genetic Algorithms (GA)
2,4K Downloads
Aktualisiert 30. Nov 2014

Lizenz anzeigen

This code is a demo of using Genetic Algorithms (GA) to solve a simple constrained multi-objective optimization (MOO) problem.
The objective is to find the pareto front of the MOO problem defined as follows:
Maximize:
f1(X) = 2*x1 + 3*x2
f2(X) = 2/x1 + 1/x2
such that:
10 > x1 > 20
20 > x2 > 30

The set of non-dominated solutions is plotted in the objective space, and displayed in the console.

Zitieren als

Sam Elshamy (2026). Constrained MOO using GA (ver. 2) (https://de.mathworks.com/matlabcentral/fileexchange/29806-constrained-moo-using-ga-ver-2), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2009a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Version Veröffentlicht Versionshinweise
1.5

Now available in Toolbox format.

1.4.0.0

Update: Bugs in line 68 and 69 and others are now fixed. Thanks to Yu-Yun

1.0.0.0