Factors on Demand
Version 1.6.0.0 (4,08 MB) von
Attilio Meucci
Proper implementation of factor models: bottom-up estimation, top-down attribution
Three case studies: random matrix theory for estimation vs. cross-sectional model for attribution; hedging based on full-repricing instead of Black-Scholes deltas; heuristcs for best K attribution/hedging factors out N
To walk through the code and for a thorough description, see
Meucci A., "Factors on Demand",
Latest version of article and code available at http://symmys.com/node/164
Zitieren als
Attilio Meucci (2026). Factors on Demand (https://de.mathworks.com/matlabcentral/fileexchange/26853-factors-on-demand), MATLAB Central File Exchange. Abgerufen.
Kompatibilität der MATLAB-Version
Erstellt mit
R2009a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS LinuxKategorien
- Computational Finance > Financial Toolbox > Portfolio Optimization and Asset Allocation >
- Computational Finance > Financial Instruments Toolbox > Price Instruments Using Functions > Equity Derivatives >
Mehr zu Portfolio Optimization and Asset Allocation finden Sie in Help Center und MATLAB Answers
Tags
Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
FactorsOnDemand/NoGreekHedging/
FactorsOnDemand/SelectionHeuristics/
FactorsOnDemand/StatisticalVsCrossSectional/
| Version | Veröffentlicht | Versionshinweise | |
|---|---|---|---|
| 1.6.0.0 | updated references |
||
| 1.5.0.0 | Added case study |
||
| 1.1.0.0 | Added one case study, also detailed in the above article |
||
| 1.0.0.0 |
