PCA (Principial Component Analysis)

Version 1.2.0.0 (1,48 KB) von Andreas
Principal Component Analysis Implementation of LindsaySmithPCA.pdf
2,5K Downloads
Aktualisiert 18. Mär 2010

Lizenz anzeigen

- Subtracting the mean of the data from the original dataset
- Finding the covariance matrix of the dataset
- Finding the eigenvector(s) associated with the greatest eigenvalue(s)
- Projecting the original dataset on the eigenvector(s)
- Use only a certain number of the eigenvector(s)
- Do back-project to the original basis vectors

Implementation of
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

"A tutorial on Principial Component Analysis"

Zitieren als

Andreas (2024). PCA (Principial Component Analysis) (https://www.mathworks.com/matlabcentral/fileexchange/26793-pca-principial-component-analysis), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2007b
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Dimensionality Reduction and Feature Extraction finden Sie in Help Center und MATLAB Answers
Quellenangaben

Inspiriert: EOF

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.2.0.0

Update Link

1.1.0.0

description update

1.0.0.0