Image segmentation using Otsu thresholding

OTSU(I,N) segments the image I into N classes by means of Otsu's N-thresholding method.
20,1K Downloads
Aktualisiert 10. Mär 2010

Lizenz anzeigen

IDX = OTSU(I,N) segments the image I into N classes by means of Otsu's N-thresholding method. OTSU returns an array IDX containing the cluster indices (from 1 to N) of each point.

IDX = OTSU(I) uses two classes (N=2, default value).

[IDX,sep] = OTSU(I,N) also returns the value (sep) of the separability criterion within the range [0 1]. Zero is obtained only with data having less than N values, whereas one (optimal value) is obtained only with N-valued arrays.

If I is an RGB image, a Karhunen-Loeve transform is first performed on the three R,G,B channels. The segmentation is then carried out on the image component that contains most of the energy.

Example:
---------
load clown
subplot(221)
X = ind2gray(X,map);
imshow(X)
title('Original','FontWeight','bold')
for n = 2:4
IDX = otsu(X,n);
subplot(2,2,n)
imagesc(IDX), axis image off
title(['n = ' int2str(n)],'FontWeight','bold')
end

------
See also:
http://www.biomecardio.com/matlab/otsu.html
-----

Zitieren als

Damien Garcia (2026). Image segmentation using Otsu thresholding (https://de.mathworks.com/matlabcentral/fileexchange/26532-image-segmentation-using-otsu-thresholding), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2007b
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Version Veröffentlicht Versionshinweise
1.4.0.0

Minor modifications

1.3.0.0

The segmentation for RGB image has been improved: a KLT is performed and we keep the component of highest energy.

1.2.0.0

RGB images are now analyzed in the gray, R, G and B scales.

1.1.0.0

New screenshot.

1.0.0.0