Simpson's rule for numerical integration

The Simpson's rule uses parabolic arcs instead of the straight lines used in the trapezoidal rule
10,6K Downloads
Aktualisiert 22. Mai 2013

Lizenz anzeigen

Z = SIMPS(Y) computes an approximation of the integral of Y via the Simpson's method (with unit spacing). To compute the integral for spacing different from one, multiply Z by the spacing increment.

Z = SIMPS(X,Y) computes the integral of Y with respect to X using the Simpson's rule.

Z = SIMPS(X,Y,DIM) or SIMPS(Y,DIM) integrates across dimension DIM

SIMPS uses the same syntax as TRAPZ.

Example:
-------
% The integral of sin(x) on [0,pi] is 2
% Let us compare TRAPZ and SIMPS
x = linspace(0,pi,6);
y = sin(x);
trapz(x,y) % returns 1.9338
simps(x,y) % returns 2.0071

Zitieren als

Damien Garcia (2024). Simpson's rule for numerical integration (https://www.mathworks.com/matlabcentral/fileexchange/25754-simpson-s-rule-for-numerical-integration), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2010a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.5.0.0

Modification in the description

1.4.0.0

Modifications in the help text

1.2.0.0

Minor modifications in the descriptions and help texts of the two functions.