Robust Landmark-Based Audio Fingerprinting

Version 1.2.0.0 (154 KB) von Dan Ellis
A landmark-based Shazam-like audio fingerprinting system.
3,5K Downloads
Aktualisiert 5. Nov 2009

Lizenz anzeigen

This landmark-based audio fingerprinting system is able to match short, noisy snippets to a reference database in near-constant time.

This is my implementation of the music audio matching algorithm developed by Avery Wang for the Shazam service. Shazam can identify apparently any commercial music track from a short snippet recorded via your cell phone in a noisy bar. I don't have the database to check if my version is quite that good, but it is able to rapidly match and locate a poor-quality excerpt from within a database of (at least) hundreds of tracks.

See http://labrosa.ee.columbia.edu/~dpwe/resources/matlab/fingerprint/ for the "published" output of the demo script.

Notes for running under Windows (from Rob Macrae) are at http://labrosa.ee.columbia.edu/matlab/fingerprint/windows-notes.txt .

Zitieren als

Dan Ellis (2024). Robust Landmark-Based Audio Fingerprinting (https://www.mathworks.com/matlabcentral/fileexchange/23332-robust-landmark-based-audio-fingerprinting), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2009a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Audio Processing Algorithm Design finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.2.0.0

Fixed a problem where problems would occur if query contained audio before matching reference item (i.e. negative match time offset). Improved robustness (at cost of matching speed) by dithering time framing of query.

1.1.0.0

No change to code, but added link to notes for running on Windows.

1.0.0.0