Conjugate Gradient Method
The conjugate gradient method aims to solve a system of linear equations, Ax=b, where A is symmetric, without calculation of the inverse of A. It only requires a very small amount of membory, hence is particularly suitable for large scale systems.
It is faster than other approach such as Gaussian elimination if A is well-conditioned. For example,
n=1000;
[U,S,V]=svd(randn(n));
s=diag(S);
A=U*diag(s+max(s))*U'; % to make A symmetric, well-contioned
b=randn(1000,1);
tic,x=conjgrad(A,b);toc
tic,x1=A\b;toc
norm(x-x1)
norm(x-A*b)
Conjugate gradient is about two to three times faster than A\b, which uses the Gaissian elimination.
Zitieren als
Yi Cao (2024). Conjugate Gradient Method (https://www.mathworks.com/matlabcentral/fileexchange/22494-conjugate-gradient-method), MATLAB Central File Exchange. Abgerufen.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxKategorien
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
Version | Veröffentlicht | Versionshinweise | |
---|---|---|---|
1.3.0.0 | To consider two trival cases. |
||
1.2.0.0 | change initial value to x=b. slightly faster. |
||
1.1.0.0 | update description |
||
1.0.0.0 |