The matrix exponential

Computes exp(A)*b where A is real and symmetric
674 Downloads
Aktualisiert 13. Dez 2008

Lizenz anzeigen

The method is based on CF approximation which is discussed here:
http://www.mathworks.com/matlabcentral/fileexchange/22055

This method is much faster than MATLAB's expm(A)*b if A is sparse and large. The matrix should be symmetric and should have no positive eigenvalues (of course, you can shift the matrix using exp(a+b) = exp(a)*exp(b)).

The vector b can have several columns, but in case they are not available at once, one could store LU-decompositions of certain shifted systems to accelerate the repeated compuation of such matrix-vector products.

THIS METHOD DOES NOT COMPUTE EXPM(A) EXPLICITLY. In case this is your goal, use expm(A) or set b to the identity matrix.

There are several papers discussing this idea, please use

Trefethen, Weideman, Schmelzer
Talbot Quadratures and Rational Approximations
BIT, 2006

as a starting point.

Zitieren als

Thomas Schmelzer (2025). The matrix exponential (https://de.mathworks.com/matlabcentral/fileexchange/22434-the-matrix-exponential), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2008a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Matrix Exponential finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0.0.0