Efficient K-Means Clustering using JIT
This is a tool for K-means clustering. After trying several different ways to program, I got the conclusion that using simple loops to perform distance calculation and comparison is most efficient and accurate because of the JIT acceleration in MATLAB.
The code is very simple and well documented, hence is suitable for beginners to learn k-means clustering algorithm.
Numerical comparisons show that this tool could be several times faster than kmeans in Statistics Toolbox.
Zitieren als
Yi Cao (2024). Efficient K-Means Clustering using JIT (https://www.mathworks.com/matlabcentral/fileexchange/19344-efficient-k-means-clustering-using-jit), MATLAB Central File Exchange. Abgerufen.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxKategorien
Tags
Quellenangaben
Inspiriert: Patch color selector
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
Version | Veröffentlicht | Versionshinweise | |
---|---|---|---|
1.0.0.0 | correct bugs in examples |