PSO Algorithms Optimization

Version 1.0.0 (4,82 KB) von Yousef
What PSO is Particle Swarm Optimization is a population-based, stochastic optimization method inspired by flocking/swarming behavior. It se
0 Downloads
Aktualisiert 25. Dez 2025

Lizenz anzeigen

Common PSO variants you’ll see in MATLAB work
  1. Inertia-weight PSOUses www (often decreased over time) to shift from exploration → exploitation.
  2. Constriction-factor PSO (Clerc-Kennedy)Uses a stability factor to control velocity and avoid explosion.
  3. Local-best (lbest) PSOUses neighborhood best instead of global best; can reduce premature convergence.
  4. Hybrid PSOPSO combined with local search (e.g., fmincon / fminunc) for refinement.
  5. Binary PSO / Discrete PSOFor feature selection, scheduling, combinatorial problems.
Handling constraints (typical approaches in MATLAB)
  • Bound constraints: clamp positions to bounds or reflect velocities.
  • General constraints:
  • penalty functions added to objective
  • feasibility rules (prefer feasible solutions)
  • hybridize with constrained solvers (PSO for global search, fmincon for local feasible refinement)
MATLAB implementation options
1) Built-in (recommended if you have Global Optimization Toolbox)
MATLAB provides particleswarm for bound-constrained optimization:
  • you define objective function
  • specify number of variables and bounds
  • tune options like swarm size, max iterations, tolerances
Good for: continuous variables, black-box objectives, engineering tuning problems.2) Custom PSO code (common in research/teaching)
You manually code:
  • initialization
  • pbest/gbest tracking
  • velocity/position updates
  • boundary handling
  • stopping criteria
Good for: custom constraints, discrete variants, hybrid PSO, novel research modifications.
Key tuning parameters (rule-of-thumb)
  • Swarm size: 20–100 (higher for harder/high-dimensional problems)
  • Max iterations: depends on budget; often 100–1000
  • www: ~0.9 down to ~0.4 (linearly decreasing is common)
  • c1,c2c_1, c_2c1,c2: often around 1.5–2.5 each (balance matters)
  • Velocity limits: helps stability; prevents particles from overshooting
Strengths and weaknesses
Strengths
  • No gradients required
  • Works well on nonlinear/multi-modal landscapes
  • Easy to parallelize (MATLAB supports parallel objective evaluation in many setups)
Weaknesses
  • Can converge prematurely (esp. high c2c_2c2, low diversity)
  • Scaling to very high dimensions can be tough
  • Needs parameter tuning; performance depends on settings and constraint handling
Typical MATLAB workflow
  1. Define objective: f = @(x) ...
  2. Define bounds: lb, ub
  3. Choose PSO approach: particleswarm or custom
  4. Set options: swarm size, iterations, stopping tolerances
  5. Run optimization
  6. Validate solution + sensitivity checks (rerun with different seeds)

Zitieren als

Yousef (2025). PSO Algorithms Optimization (https://de.mathworks.com/matlabcentral/fileexchange/182907-pso-algorithms-optimization), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2023b
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Tags Tags hinzufügen

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

ypea102-particle-swarm-optimization-master/PSO

Version Veröffentlicht Versionshinweise
1.0.0