Dwarf Sperm Whale Optimization (DSWO) Algorithm

inspired by the behavior or characteristics of the dwarf sperm whale.
25 Downloads
Aktualisiert 5. Aug 2025

Lizenz anzeigen

Algorithm Steps
  1. Initialization:Randomly initialize a population of candidate solutions (called "whales").
  2. Deep Dive (Exploration):Update positions based on deep, long-range movements, possibly using Levy flights:Xit+1=Xit+αLevy(β)X_i^{t+1} = X_i^t + \alpha \cdot \text{Levy}(\beta)Xit+1=Xit+αLevy(β)
  3. Prey Detection (Exploitation):Refine search around promising solutions using small adaptive steps:Xit+1=Xit+γ(XbestXit)rX_i^{t+1} = X_i^t + \gamma \cdot (X_{\text{best}} - X_i^t) \cdot rXit+1=Xit+γ(XbestXit)rwhere rrr is a random number in [0, 1].
  4. Escape Mechanism (Avoiding Local Minima):With a small probability ppp, apply an "ink escape":Xit+1=Xit+δrandn()X_i^{t+1} = X_i^t + \delta \cdot \text{randn}()Xit+1=Xit+δrandn()where randn()\text{randn}()randn() adds noise to escape a local optimum.
  5. Evaluation:Evaluate fitness of each solution.
  6. Update Best:Keep track of the best solution found so far.
  7. Termination:Repeat until a maximum number of iterations or convergence.
🔢 Parameters
  • α\alphaα: step size for deep dive
  • β\betaβ: shape parameter for Levy flight
  • γ\gammaγ: step size for exploitation
  • δ\deltaδ: escape strength
  • ppp: escape probability
Advantages
  • Balances exploration and exploitation
  • Can avoid premature convergence with its "ink" defense strategy
  • Suitable for high-dimensional or noisy optimization problems
🔧 Applications
  • Engineering design
  • Neural network training
  • Renewable energy optimization (e.g., solar/wind systems)
  • Economic dispatch in power systems

Zitieren als

praveen kumar (2025). Dwarf Sperm Whale Optimization (DSWO) Algorithm (https://de.mathworks.com/matlabcentral/fileexchange/181718-dwarf-sperm-whale-optimization-dswo-algorithm), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2025a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0.0