Adaptive Memetic Binary Optimization (AMBO) Algorithm

A novel adaptive memetic binary optimization algorithm for feature selection
26 Downloads
Aktualisiert 25. Jul 2025
AMBO: Adaptive Memetic Binary Optimization Algorithm for Feature Selection
This repository contains the official MATLAB implementation of the AMBO (Adaptive Memetic Binary Optimization) algorithm proposed in the paper:
A. C. Çınar, A novel adaptive memetic binary optimization algorithm for feature selection, Artificial Intelligence Review, 2023. DOI: 10.1007/s10462-023-10482-8
📌 About the Project
AMBO is a pure binary metaheuristic algorithm specifically designed for feature selection tasks. It uses:
  • Adaptive crossover mechanisms (single-point, double-point, uniform)
  • Canonical mutation
  • Logic gate-based local search using AND, OR, and XOR for balancing exploration and exploitation.
It has been tested on 21 benchmark datasets and outperformed several state-of-the-art algorithms including BPSO, GA variants, BDA, BSSA, and BGWO.
📂 Files
  • Main.m: Main script to run the algorithm.
  • datasets/: Sample datasets used in the paper.
  • results/: Contains output logs and performance results.
🧪 Requirements
  • MATLAB R2021a or later
  • Statistics and Machine Learning Toolbox (for KNN)
📈 Citation
If you use this code or data in your research, please cite the paper as:
@article{cinar2023ambo,
title={A novel adaptive memetic binary optimization algorithm for feature selection},
author={Cinar, Ahmet Cevahir},
journal={Artificial Intelligence Review},
year={2023},
doi={10.1007/s10462-023-10482-8}
}
🤝 Collaboration
Contributions, ideas, and collaborations are welcome!
Feel free to contact me for research partnerships, extensions, or comparative benchmarking:
🔗 LinkedIn: Ahmet Cevahir Çınar

Zitieren als

@article{cinar2023ambo, title={A novel adaptive memetic binary optimization algorithm for feature selection}, author={Cinar, Ahmet Cevahir}, journal={Artificial Intelligence Review}, year={2023}, doi={10.1007/s10462-023-10482-8} }

Kompatibilität der MATLAB-Version
Erstellt mit R2025a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Versionen, die den GitHub-Standardzweig verwenden, können nicht heruntergeladen werden

Version Veröffentlicht Versionshinweise
1.0.0

Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.
Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.