Miltary Target Classification in MSTAR Dataset using MATLAB
Version 1.0.0 (8,66 MB) von
Fazal
Image Processing
% Step 1: Load and Preprocess the Dataset
trainFolder = 'E:\Project\3 Vehicles\TRAIN DATA'; % Update with the path to the "train" folder
testFolder = 'E:\Project\3 Vehicles\TEST DATA'; % Update with the path to the "test" folder
% Load the training dataset and label based on folder names (train folder)
imdsTrainVal = imageDatastore(trainFolder, 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
% Convert the images to grayscale (if not already grayscale) and resize to 128x128
imdsTrainVal.ReadFcn = @(x) imresize(imread(x), [128 128]);
% Split the dataset into 80% training and 20% validation
[imdsTrain, imdsValidation] = splitEachLabel(imdsTrainVal, 0.8, 'randomized');
% Step 2: Define the CNN Architecture
layers = [
imageInputLayer([128 128 1]) % Grayscale images of size 128x128 with 1 channel
% First convolutional layer and ReLU activation
convolution2dLayer(3, 16, 'Padding', 'same')
batchNormalizationLayer
reluLayer
% First max pooling layer
maxPooling2dLayer(2, 'Stride', 2)
% Second convolutional layer and ReLU activation
convolution2dLayer(3, 32, 'Padding', 'same')
batchNormalizationLayer
reluLayer
% Second max pooling layer
maxPooling2dLayer(2, 'Stride', 2)
% Fully connected layer
fullyConnectedLayer(64)
reluLayer
% Output layer (3 classes: BMP2, BTR70, T72)
fullyConnectedLayer(3)
softmaxLayer
classificationLayer
];
% Step 3: Specify Training Options
options = trainingOptions('sgdm', ...
'MaxEpochs', 15, ... % Number of epochs
'MiniBatchSize', 32, ... % Mini-batch size
'InitialLearnRate', 0.001, ... % Learning rate
'ValidationData', imdsValidation, ...
'ValidationFrequency', 10, ... % Validate every 10 iterations
'Verbose', false, ...
'Plots', 'training-progress'); % Display training progress
% Step 4: Train the CNN
net = trainNetwork(imdsTrain, layers, options);
% Step 5: Evaluate the Model
YPred = classify(net, imdsValidation); % Predict the validation set
YValidation = imdsValidation.Labels; % True labels
% Calculate accuracy
accuracy = mean(YPred == YValidation);
disp(['Validation accuracy: ', num2str(accuracy * 100), '%']);
% Confusion matrix for performance evaluation
confusionchart(YValidation, YPred);
% Step 6: Test the Model (using the test folder)
% Load test images from the "test" folder
imdsTest = imageDatastore(testFolder, 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
imdsTest.ReadFcn = @(x) imresize(imread(x), [128 128]);
% Classify the test set images
YPredTest = classify(net, imdsTest);
YTest = imdsTest.Labels; % True labels for test images
% Calculate test accuracy
testAccuracy = mean(YPredTest == YTest);
disp(['Test accuracy: ', num2str(testAccuracy * 100), '%']);
% Confusion matrix for test set performance evaluation
confusionchart(YTest, YPredTest);
% Step 7: Visualize Some Test Results
% Randomly select 9 images from the test set to visualize
numImagesToShow = 20; % Number of images to display
idx = randperm(length(imdsTest.Files), numImagesToShow); % Randomly select images
figure;
for i = 1:numImagesToShow
subplot(5, 4, i);
% Load and preprocess the image
img = readimage(imdsTest, idx(i));
imgResized = imresize(img, [128 128]); % Ensure resizing
% Classify the image
[label, score] = classify(net, imgResized);
% Display the image and the predicted label
imshow(img);
title(['Predicted: ', char(label), ' (', num2str(max(score) * 100, '%.2f'), '%)']);
end
% Step 8: Save the Trained Model
save('E:\Project\3 Vehicles\Custom CNN method\TrainedModel.mat', 'net'); % Save the trained model
Zitieren als
Fazal (2024). Miltary Target Classification in MSTAR Dataset using MATLAB (https://www.mathworks.com/matlabcentral/fileexchange/172985-miltary-target-classification-in-mstar-dataset-using-matlab), MATLAB Central File Exchange. Abgerufen.
Kompatibilität der MATLAB-Version
Erstellt mit
R2019a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS LinuxTags
Quellenangaben
Inspiriert von: ChatGPT Generated MATLAB program
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
Version | Veröffentlicht | Versionshinweise | |
---|---|---|---|
1.0.0 |