Classification

Version 1.0.0 (20,2 KB) von Rudy Gunawan
CT Scan Image Preparation and Lung Cancer Classification
71 Downloads
Aktualisiert 8. Mai 2024

Classification

CT Scan Image Preparation and Lung Cancer Classification

MATLAB scripts that process and prepare DICOM files of Lung CT Scan Images into targeted [20x20x20] nodules. A filtering process for CNN training preparation follows this. The CNN scripts are also attached.

The DICOM images of lung cancer for CNN training are obtained from two sources:

The DICOM images of lung cancer for independent validation are obtained from one source:

The Main script will run ParenchymaSegment, NoduleSearch, and NoduleExtract functions, lung segmentation from DICOM images, searching nodules in the 3D domain, and extracting them into 20 x 20 x 20 dimensions.

NoduleSearch has filtering parameters in the FilterParam function. The cancer nodules are extracted manually from the extracted nodule files and then oversampled using an OverSampling script.

BatchPreps and Train scripts are for deep learning training. There are 5 CNN models available for training:

  • Modified U Network (MUNet)
  • Modified Double U Network (MDUNet)
  • Modified Segmentation Network (MSegNet)
  • Modified Deconvolutional Network (MDeConvNet)
  • Modified Residual Encoder-Decoder Network (MREDNet)
  • Modified Residual Network (MResNet)
  • Modified Residual Network with Transformation (MResNeXt)
  • Modified Efficient Network (MEffNet)

Zitieren als

Rudy Gunawan (2026). Classification (https://github.com/RudGunawan/Classification), GitHub. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2024a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Tags Tags hinzufügen

Versionen, die den GitHub-Standardzweig verwenden, können nicht heruntergeladen werden

Version Veröffentlicht Versionshinweise
1.0.0

Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.
Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.