Identify Arm Motions Using EMG Signals and Deep Learning.

Version 1.0.0 (2,88 KB) von BISHNU
This example employs sequence-to-sequence classification with an LSTM network to detect arm motions from EMG signals, achieving an 84% accu
34 Downloads
Aktualisiert 11. Apr 2024

Lizenz anzeigen

This example employs sequence-to-sequence classification with an LSTM network to detect arm motions from EMG signals, achieving an 84% accuracy. Misclassifications primarily occurred between hand open and wrist extension, and hand close and wrist flexion, attributed to overlapping muscle activation patterns and electrode placement bias towards muscles involved in wrist flexion.

Zitieren als

BISHNU (2025). Identify Arm Motions Using EMG Signals and Deep Learning. (https://www.mathworks.com/matlabcentral/fileexchange/163161-identify-arm-motions-using-emg-signals-and-deep-learning), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2024a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0.0