Toolbox Sparse Optmization

Optimization codes for sparsity related signal processing
20,6K Downloads
Aktualisiert 3. Jan 2011

Lizenz anzeigen

This toolbox contains the implementation of what I consider to be fundamental algorithms
for non-smooth convex optimization of structured functions. These algorithms might not be the fasted
(although they certainly are quite efficient), but they all have a simple implementation in term
of black boxes (gradient and proximal mappings, given as callbacks). However, you should have
some knowledge about what is a gradient operator and a proximal mapping in order to be able
to use this toolbox on your own problems. I suggest you have a look at the
"suggested readings" for some more information about all this.

Zitieren als

Gabriel Peyre (2024). Toolbox Sparse Optmization (https://www.mathworks.com/matlabcentral/fileexchange/16204-toolbox-sparse-optmization), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2007a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Quellenangaben

Inspiriert: CoSaMP and OMP for sparse recovery

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.5.0.0

Totally changed the toolbox to contain only optimization codes.

1.3.0.0

Modified license.
Remove GPL files. Gabriel said he will redo this in January.

1.2.0.0

Update of Licence

1.1.0.0

BSD Licence