PDF of Sum of Independent Exponential Random Variables
sumexppdf.m MATLAB Helper Function
This code package contains a helper function sumexppdf()
designed to generate Probability Density Functions (PDF) and Cumulative Distribution Functions (CDF) for the sum of independent exponential random variables.
Functionality:
The function computes the PDF of the sum of independent exponential random variables: Y = X_1 + X_2 + X_3 + ... + X_n.
When provided with weights as the third input argument, it computes the PDF of the weighted sum of independent exponential random variables: Y = a_1.X_1 + a_2.X_2 + ... + a_n.X_n
Note: Only positive weights are supported.
Author: Zakir Hussain Shaik Contact: zakir.b2a@gmail.com
Function Inputs:
-
t
(Mandatory): Value at which PDF/CDF is evaluated -
lambdas
(Mandatory): Parameters of Exponential Random Variables -
weights
(Optional): Weights of Random Variables
Function Outputs:
-
f
: PDF evaluated att
-
F
: CDF evaluated att
Usage Examples:
f = sumexppdf(t, lambdas); % or [f, F] = sumexppdf(t, lambdas);
f = sumexppdf(t, lambdas, weights); % or [f, F] = sumexppdf(t, lambdas, weights);
Function Details:
Function Version: 1.0 License: This code is licensed under the GPLv2 license. Compatibility: MATLAB (tested on 2023a) Additional Information: This file is accompanied by example scripts and an illustration on obtaining the PDF of the norm square of a complex Gaussian vector.
For theoretical expressions and further discussions, refer to the accompanying blog article: https://www.zakirtechblog.com/post/sumexppdf/
Zitieren als
Zakir Hussain (2024). PDF of Sum of Independent Exponential Random Variables (https://github.com/zakirhussainshaik/sumexppdf_matlab/releases/tag/v1.0), GitHub. Abgerufen.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
Version | Veröffentlicht | Versionshinweise | |
---|---|---|---|
1.0 |