MyFisher23
Fisher's exact test of 2x3 contingency tables permits calculation of precise probabilities in situation where, as a consequence of small cell frequencies, the much more rapid normal approximation and chi-square calculations are liable to be inaccurate. The Fisher's exact test involves the computations of several factorials to obtain the probability of the observed and each of the more extreme tables. Factorials growth quickly, so it's necessary use logarithms of factorials. This computations is very easy in Matlab because x!=gamma(x+1) and log(x!)=gammaln(x+1). This function is fully vectorized to speed up the computation.
Syntax: p=myfisher23(x)
Inputs:
X - 2x3 data matrix
Outputs:
- Three p-values
Created by Giuseppe Cardillo
giuseppe.cardillo-edta@poste.it
To cite this file, this would be an appropriate format: Cardillo G. (2007) MyFisher23: a very compact routine for Fisher's exact test on 2x3 matrix http://www.mathworks.com/matlabcentral/fileexchange/15399
Zitieren als
Giuseppe Cardillo (2024). MyFisher23 (https://github.com/dnafinder/myfisher23), GitHub. Abgerufen.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxKategorien
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
Versionen, die den GitHub-Standardzweig verwenden, können nicht heruntergeladen werden
Version | Veröffentlicht | Versionshinweise | |
---|---|---|---|
2.0.0.0 | inputparser; table implementation; github link |
|
|
1.6.0.0 | reuploading |
||
1.5.0.0 | Changes in description |
||
1.4.0.0 | Actually, the function also computes the mid-P correction to make the test less conservative. |
||
1.3.0.0 | Actually, the function also computes the mid-P correction to make the test less conservative. |
||
1.2.0.0 | little improvements in tables enumeration |
||
1.1.0.0 | Changes in help section |
||
1.0.0.0 | Speeding up using gammaln function and vectorization. |