minimum-redundancy maximum-relevance feature selection

The source codes of minimum redundancy feature selection
14K Downloads
Aktualisiert 9. Mai 2007

Keine Lizenz

Two source code files of the mRMR (minimum-redundancy maximum-relevancy) feature selection method in (Peng et al, 2005 and Ding & Peng, 2005, 2003), whose better performance over the conventional top-ranking method has been demonstrated on a number of data sets in recent publications. This version uses mutual information as a proxy for computing relevance and redundancy among variables (features). Other variations such as using correlation or F-test or distances can be easily implemented within this framework, too.

Hanchuan Peng, Fuhui Long, and Chris Ding, "Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy,"
IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 27, No. 8, pp.1226-1238, 2005.

Ding C., and Peng HC, "Minimum redundancy feature selection from microarray gene expression data," Journal of Bioinformatics and Computational Biology,
Vol. 3, No. 2, pp.185-205, 2005.

Ding, C and Peng HC, Proc. 2nd IEEE Computational Systems Bioinformatics Conference (CSB 2003),
pp.523-528, Stanford, CA, Aug, 2003.

** Note that you need to download the mutual information computing toolbox of the same author. ***

Zitieren als

Hanchuan Peng (2024). minimum-redundancy maximum-relevance feature selection (https://www.mathworks.com/matlabcentral/fileexchange/14916-minimum-redundancy-maximum-relevance-feature-selection), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R12
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Biological and Health Sciences finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0.0.0