RL-Driven Adaptive Phase Optimization for IRS-Based Systems

This code simulates an RL-based methodology to dynamically optimize phase shifts within an IRS, aiming to enhance communication quality.
156 Downloads
Aktualisiert 19. Okt 2023

Lizenz anzeigen

This code simulates a reinforcement learning (RL) strategy for the dynamic optimization of phase shifts in an intelligent reflective surface (IRS) within a wireless communication scenario. Its main goal is the adaptive modification of IRS phase shifts to optimize the signal-to-noise ratio (SNR) at the receiving end, thus improving overall system performance. This code can serve as a foundational framework for exploring the capabilities of RL in more complex and practical IRS optimization scenarios.

Zitieren als

Ardavan Rahimian (2024). RL-Driven Adaptive Phase Optimization for IRS-Based Systems (https://www.mathworks.com/matlabcentral/fileexchange/136816-rl-driven-adaptive-phase-optimization-for-irs-based-systems), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2023b
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Tags Tags hinzufügen

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0