Predator-Prey Dynamics with Fixed Sum
Version 1.0.0 (1,61 KB) von
Mrutyunjaya Hiremath
The MATLAB code models the Lotka-Volterra predator-prey equations over time. It shows population dynamics of predators and prey using ode23
The MATLAB code provides a simulation of the Lotka-Volterra predator-prey model, which is a pair of first-order, non-linear differential equations frequently used to describe the dynamics of biological systems. Here's a more detailed description:
Inputs:
- Initial conditions (`y0 = [20; 20]`): The system starts with 20 predators and 20 preys.
- Time span (`t0 = 0, tfinal = 15`): The simulation is conducted from time t=0 to t=15.
Functions:
- `lotka(t, y)`: This function defines the Lotka-Volterra equations. It uses a 2x2 diagonal matrix to represent the interactions between the two species.
- `yp = diag([1 - .01*y(2), -1 + .02*y(1)])*y;`
ODE Solver:
- `ode23`: This built-in MATLAB function is used to numerically solve the system of ordinary differential equations.
Output:
- The code produces a plot that shows the populations of predators and prey as functions of time.
Visualization:
- The plot visualizes the populations of predators and preys over the defined time span.
Overall, the code is a basic but insightful computational tool for understanding the dynamics of predator-prey interactions.
Zitieren als
Mrutyunjaya Hiremath (2026). Predator-Prey Dynamics with Fixed Sum (https://de.mathworks.com/matlabcentral/fileexchange/134287-predator-prey-dynamics-with-fixed-sum), MATLAB Central File Exchange. Abgerufen.
Kompatibilität der MATLAB-Version
Erstellt mit
R2019b
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS LinuxTags
Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
| Version | Veröffentlicht | Versionshinweise | |
|---|---|---|---|
| 1.0.0 |
