Fatigue data analysis with Weibull distribution function
Version 1.0.0 (3,95 KB) von
Bruno Pedrosa
Statistical analysis of fatigue data to define mean and characteristic parameters of a linear fatigue model using Weibull distribution
This function is prepared to analyse experimental fatigue data defining a mean curve using a linear fatigue model based on linear regression:
y = Ax + B
It also computes a characteristic value of the linear fatigue model corresponding to a probability of failure (p) based on Weibull distribution function:
y = [Ax + B] * beta [-ln(p)] ^ alfa
Alfa and beta are the scale and shape parameters, respectively, estimated by means of four estimation methods: Linear Least Squares Method, Weighted Linear Least Squares Method, Maximum Likelihood Method and Method of Moments. The most accurate estimation method is determined by aplying three goodness-of-fit tests: Kolmogorov-Smirnov, Anderson-Darling and Chi-Square.
INPUTS:
p - probability of failure [-]
cycles - experimental data: number of cycles
damage_parameter - experimental data: damage parameter
(stress,strain,etc.)
OUTPUTS:
A - Slope of linear fatigue model
B - Intersection of linear fatigue model with ordinate axis
r2 - Coefficient of determination
alfa - Scale parameter for Weibull distribution
beta - Shape parameter for Weibull distribution
detail_cat - Detail category
REFERENCES:
- J. Barbosa, R. Júnior, J. Correia, A. Jesus and R. Calçada, Analysis of the fatigue life estimators of the materials using small samples, Journal of Strain Analysis for Engineering Design, 53 (8): 699-710, https://doi.org/10.1177/0309324718782245
- B. Pedrosa, J. Correia, C. Rebelo and M. Veljkovic, Reliability of Fatigue Fatigue Strength Curves for Riveted Connections Using Normal and Weibull Distribution Functions, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, vol. 6, no. 3, (2020), https://doi.org/10.1061/AJRUA6.0001081
- B. Pedrosa, J. Correia, C. Rebelo, M. Veljkovic and H. Gervásio, Fatigue Experimental Characterization of Preloaded Injection Bolts in a Metallic Bridge Strengthening Scenario, Engineering Structures, vol. 234, 112005 (2021), https://doi.org/10.1016/j.engstruct.2021.112005
Developed by Bruno Pedrosa
ISISE - Institute for Sustainability
and Innovation in Structural Engineering
Department of Civil Engineering
University of Coimbra
Portugal
Bruno Pedrosa (bruno.pedrosa@uc.pt)
Ver.: 15-May-2023
Zitieren als
Bruno Pedrosa (2026). Fatigue data analysis with Weibull distribution function (https://de.mathworks.com/matlabcentral/fileexchange/129489-fatigue-data-analysis-with-weibull-distribution-function), MATLAB Central File Exchange. Abgerufen.
Kompatibilität der MATLAB-Version
Erstellt mit
R2018a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS LinuxTags
Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
| Version | Veröffentlicht | Versionshinweise | |
|---|---|---|---|
| 1.0.0 |
