Iterative Closest Point Method
Version 1.6.0.1 (6,68 KB) von
Per Bergström
Fits a set of data points to a set of model points under a rigid body transformation
The ICP (iterative closest point) algorithm finds a rigid body transformation such that a set of data points fits to a set of model points under the transformation. Default is to use least squares minimization but other criterion functions can be used as well. The implementation is based on the IRLS-ICP described in [1].
References:
[1] Bergström, P. and Edlund, O. 2014, “Robust registration of point sets using iteratively reweighted least squares”, Computational Optimization and Applications, vol 58, no. 3, pp. 543-561, doi: 10.1007/s10589-014-9643-2
[2] Bergström, P. and Edlund, O. (2016) 2017, “Robust registration of surfaces using a refined iterative closest point algorithm with a trust region approach”, Numerical Algorithms, doi: 10.1007/s11075-016-0170-3
Doi links:
http://dx.doi.org/10.1007/s10589-014-9643-2
http://dx.doi.org/10.1007/s11075-016-0170-3
http://dx.doi.org/10.1007/s00170-010-2950-6
Springer Nature’s SharedIt links (full paper online access):
http://rdcu.be/nJRM
http://rdcu.be/noHE
http://rdcu.be/nJUW
A demonstration of applications, where an ICP-algorithm [2] is implemented in Matlab and C, can be seen on YouTube
https://youtu.be/cPS-DY9sCz4
Zitieren als
Per Bergström (2025). Iterative Closest Point Method (https://www.mathworks.com/matlabcentral/fileexchange/12627-iterative-closest-point-method), MATLAB Central File Exchange. Abgerufen.
Kompatibilität der MATLAB-Version
Erstellt mit
R2015a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS LinuxKategorien
Mehr zu Delaunay Triangulation finden Sie in Help Center und MATLAB Answers
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
Version | Veröffentlicht | Versionshinweise | |
---|---|---|---|
1.6.0.1 | Update of links |
||
1.6.0.0 | Improved documentation |
||
1.5.0.0 | A new implementation of the ICP algorithm and three examples are added |
||
1.0.0.0 | Have added additional inputs to icp. |