Image Bandpass Filter

Bandpass filter for 2D images. Remove high- and low-frequency noise and stripes. Butterworth, gaussian, and hard filter options.
183 Downloads
Aktualisiert 19. Jan 2023

imbandpass

Bandpass filter for images (2D arrays) supressing high-frequency noise, low-frequency variations, and stripes. Gaussian, Butterworth, or hard filter options. View bandpass on File Exchange

To use: call function imbandpass(image, low_cutoff, high_cutoff), returns smoothed image.

The default options of Gaussian filter, Gaussian stripe filter, and mirrored padding were chosen to replicate imageJ's FFT Bandpass filter.

To access non-default options including stripe supression, use keyword arguments, for example

imbandpass(I, 3, 250, filter="Butterworth", stripes="Horizontal", stripeTolerance=10)

equivalently

imbandpass(I, 3, 250, "filter", "Butterworth", "stripes", "Horizontal", "stripeTolerance", 10).

Arguments

Positional

image Image in. Handles single-channel or RGB images as arrays: input (m,n) or (m,n,3) array of values in range 0 to 255.

low_cutoff - filter out features below this (real space) lengthscale in pixels.

high_cutoff - filter out features above this lengthscale.

It's possible to set upper and/or lower cutoff to [] and not apply this aspect of the filter.

Optional keyword parameters

stripes = 'Horizontal' ,'Vertical', or 'None' - supress stripes, default 'None'

stripeFilter = 'Gaussian' or 'hard' - stripe filter mode, default 'gaussian'

stripeTolerance - tolerance (in percent) for stripe deviation from horizontal/vertical alignement, default 5.

filter='gaussian', 'butterworth' or 'hard', filter profile, default 'gaussian'

butterworthN exponent in butterworth filter, default 1

padOption = 'symmetric' , 'replicate', 0 or other value, or 'None' - how to pad image border for Fourier transform, default 'symmetric'

Output

image_out - a uint8 array with the same dimensions and number of channels as image.


If this is useful to you or you want it fixed, please let me know with a rating/comment that it worked/how it didn't work!

Zitieren als

Jason Klebes (2024). Image Bandpass Filter (https://github.com/jklebes/bandpass/releases/tag/v1.2.2), GitHub. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2022b
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.2.2.0

See release notes for this release on GitHub: https://github.com/jklebes/bandpass/releases/tag/v1.2.2

1.2.1.0

See release notes for this release on GitHub: https://github.com/jklebes/bandpass/releases/tag/v1.2.1

1.2.0.0

See release notes for this release on GitHub: https://github.com/jklebes/bandpass/releases/tag/v1.2.0

1.1.1

See release notes for this release on GitHub: https://github.com/jklebes/bandpass/releases/tag/v1.1.1

1.1.0.0

See release notes for this release on GitHub: https://github.com/jklebes/bandpass/releases/tag/v1.1.0

1.0.4

See release notes for this release on GitHub: https://github.com/jklebes/bandpass/releases/tag/v1.0.4

1.0.2

See release notes for this release on GitHub: https://github.com/jklebes/bandpass/releases/tag/v1.0.2

1.0.0

See release notes for this release on GitHub: https://github.com/jklebes/bandpass/releases/tag/v1.0.0

0.0.1

Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.
Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.