Hierarchical hp FEM on rectangles in 2D
Version 1.0.3 (61,5 KB) von
Alexej Moskovka
Implementation of rectangular hp-FEM with hierarchical shape functions that allows an effective assembly of mass and stiffness matrices.
This code provides eight examples that demonstrate implementation of hierarchical hp-FEM on rectangles in 2D from the paper:
Alexej Moskovka and Jan Valdman: MATLAB implementation of hp finite elements on rectangles, PPAM 2022, Lecture Notes in Computer Science (LNCS) 13827, pp. 287-299 (2023)
https://doi.org/10.1007/978-3-031-30445-3_24
Examples 1-4 provide visualization of 1D and 2D hiearchical shape functions together with the isoparametric transformation of a 2D shape function from a reference element on a quadrilateral.
Examples 5-6 assemble and display the indexing matrices for simple domain rectangulations.
Example 7 provides assembly times of mass and stiffness matrices for different h and p refinements.
Example 8 applies hp-FEM on solving a particular diffusion-reaction boundary value problem with uniform hp-refinements.
Zitieren als
Alexej Moskovka and Jan Valdman (2022). Hierarchical hp FEM on rectangles in 2D (https://www.mathworks.com/matlabcentral/fileexchange/111420), MATLAB Central File Exchange. Retrieved May 10, 2022.
Kompatibilität der MATLAB-Version
Erstellt mit
R2022a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS LinuxTags
Quellenangaben
Inspiriert von: Implementation of C1 FEM, Fast FEM assembly: edge elements, Fast FEM assembly: nodal elements
Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
hp-FEM_MatlabCentral
hp-FEM_MatlabCentral/library_hp_shape_functions
hp-FEM_MatlabCentral/library_integration
hp-FEM_MatlabCentral/library_meshing
hp-FEM_MatlabCentral/library_vectorization_faster
hp-FEM_MatlabCentral/library_visualization
| Version | Veröffentlicht | Versionshinweise | |
|---|---|---|---|
| 1.0.3 | The citation of the published paper together with its DOI have been added. |
