Vector Quantization - K-Means

A simple algorithm for training codebooks for vector quantizationusing K-Means algorithm.
15,2K Downloads
Aktualisiert 2. Mai 2006

Keine Lizenz

This function is for training a codebook for vector quantization. The data set is split to two clusters, first, and the mean of each cluster is found (centroids). The disttance of each vector from these centroids is found and each vector is associated with a cluster. The mean of vectors of each cluster replaces the centroid first. If the total distance is not improved substantially, The centroids are each split to two. This goes on untill the required number of clusters is reached and the improvement is not substantial.

Zitieren als

Esfandiar Zavarehei (2025). Vector Quantization - K-Means (https://www.mathworks.com/matlabcentral/fileexchange/10943-vector-quantization-k-means), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R14
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0.0.0