Parameter Identification Library

Simulink blocks for system identification purposes.
9,1K Downloads
Aktualisiert 29. Mai 2023

simulink-parameter-identification-library

View Parameter Identification Library on File Exchange

Open in MATLAB Online

This Simulink® library is a collection of blocks that perform Parameter Identification through the most rewarded frequency and time domain linear regression methods. It works in Matlab 5.3.1 as well as in later versions.

Main examples are:

-) Recursive Least Squares (RLS).

-) Simple Windowed Regression (LLS).

-) Local Weighted Regression (LWR).

-) Fourier Transform Regression (FTR).

Two example on Linear and Nonlinear Aircraft Parameter Identification are included in the library.

IMPORTANT, all of these blocks REQUIRE SMXL (the Simulink Matrix Library) freely available in the File exchange section of the MATLAB Central website.

Giampy, October 2001

Zitieren als

Giampiero Campa (2024). Parameter Identification Library (https://github.com/giampy1969/simulink-parameter-identification-library/releases/tag/v1.2), GitHub. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R11.1
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.2

See release notes for this release on GitHub: https://github.com/giampy1969/simulink-parameter-identification-library/releases/tag/v1.2

1.1.0.0

Streamlined the nonlinear identification example, and inserted additional explanations to both examples. I've also changed one logical operation that prevented the Simulink implementation of the LWR-RD block to work with later versions of matlab.

1.0.0.0

Changed info.xml file to avoid annoying messages within the last matlab versions.

Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.
Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.