Intersection of ellipsoid and cube
8 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I need to determine the intersection of volume of ellipsoid with that of a cuboid in matlab. Any suggestions ?
2 Kommentare
Walter Roberson
am 20 Jun. 2011
Do you need only the volume, or do you need the coordinates of intersection as well?
Antworten (1)
Naga
am 12 Feb. 2025
Bearbeitet: Naga
am 12 Feb. 2025
If you're looking to find the volume where an ellipsoid intersects with a cube, you can use a Monte Carlo simulation for a neat approximation.
- Use a million random points (1e6) for better accuracy.
- Generate random points within the cube's bounding box. For each point, check if it’s inside the ellipsoid using the equation ((x/a)^2 + (y/b)^2 + (z/c)^2 \leq 1).
- Estimate the intersection volume by multiplying the cube's volume by the ratio of points inside the ellipsoid to the total number of points.
Here's a snippet of code to do this:
a = 3; b = 2; c = 1; % Define the parameters of the ellipsoid
cube_center = [0, 0, 0]; cube_side = 4; % Define the parameters of the cube
% Define the number of random points for the Monte Carlo simulation
num_points = 1e6; % Increase this number for higher accuracy
% Generate random points within the bounding box of the cube
x = (rand(num_points, 1) - 0.5) * cube_side + cube_center(1);
y = (rand(num_points, 1) - 0.5) * cube_side + cube_center(2);
z = (rand(num_points, 1) - 0.5) * cube_side + cube_center(3);
% Check which points are inside the ellipsoid
inside_ellipsoid = (x.^2 / a^2) + (y.^2 / b^2) + (z.^2 / c^2) <= 1;
% Estimate the volume of the intersection
volume_cube = cube_side^3;
volume_intersection = volume_cube * sum(inside_ellipsoid) / num_points;
% Display the result
fprintf('Estimated volume of intersection: %.4f\n', volume_intersection);
In my case, I got an estimated intersection volume of about 21.4030. If you want more accurate results, just increase the number of points.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Computational Geometry finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!