High order equation Solving
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Jack_111
am 11 Okt. 2013
Kommentiert: Walter Roberson
am 14 Okt. 2013
I am doing ray tracing and I have to make intersection between the ray and polynomial so I got the following equation and I have to solve it for t.
A(21).*(Y.^5) + (A(20).*(Y.^4)).*X + A(19).*(Y.^4) + (A(18).*(Y.^3)).*(X.^2) + (A(17).*(Y.^3)).*X + A(16).*(Y.^3) + (A(15).*(Y.^2)).*(X.^3) + (A(14).*(Y.^2)).*(X.^2) + (A(13).*(Y.^2)).*X + A(12).*(Y.^2) + (A(11).*(Y)).*(X.^4) + (A(10).*Y).*(X.^3) + (A(9).*Y).*(X.^2) + (A(8).*Y).*(X) + (A(7).*Y) + A(6).*(X.^5) + A(5).*(X.^4) + A(4).*(X.^3) + A(3).*(X.^2) + A(2).*X + A(1) - Z = 0;*
While:
X = (px +t*dx);
Y = (py +t*dy);
Z = (pz +t*dz);
so I want to get t in respect to the other variables. ( I have all the other variables but I don't know how to calculate it )
Please support Many thanks in advance
0 Kommentare
Akzeptierte Antwort
sixwwwwww
am 12 Okt. 2013
Dear Yaman, Here is the solution of your problem in symbolic form:
syms X Y Z p x y z t dx dy dz
A = sym('A%d', [1 21]);
X = p * x + t * dx;
Y = p * y + t * dy;
Z = p * z + t * dz;
equation = A(21) * Y^5 + (A(20) * Y^4) * X + A(19)* Y^4 + (A(18) * Y^3) * X^2 + (A(17) * Y^3) * X + A(16) * Y^3 + (A(15) * Y^2) * X^3 + ...
(A(14) * Y^2) * X^2 + (A(13) * Y^2) * X + A(12) * Y^2 + (A(11) * Y) * X^4 + (A(10) * Y) * X^3 + (A(9) * Y) * X^2 + (A(8) * Y) *X + A(7) * Y +...
A(6) * X^5 + A(5) * X^4 + A(4) * X^3 + A(3) * X^2 + A(2) * X + A(1) - Z;
Solution = solve(equation == 0, t);
Now if you put your know values of A(1)...A(21) and p, x, y, z, dx, dy, dz using "subs" function in "equation" then use last statement
Solution = solve(equation == 0, t);
then you will get your desired solution for "t". For information about "subs" see http://www.mathworks.com/help/symbolic/subs.html . Good luck!
2 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Polynomials finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!