Value of variable not changing.
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Sahil Kumar
am 8 Aug. 2021
Kommentiert: Sahil Kumar
am 8 Aug. 2021
In the following code the value mdot is set to change once time t reaches a certain value but when i run it it does not change. Could anyone explain why this is happening?
clear all;
%Projectile motion with drag and thrust solution using RK4
%variation of density with height
%x'' = FDx + Tx, y'' = -g + FDy + Ty Equations to be solved
g=9.807;
vel=1000; th_deg=60;m=80; %input
cd=0.75; rho=1.225; S=2.176*10^(-4);
k=0.5*rho*cd*S; % constant k used in drag force F=kv^2
mdot = 0.2; %burn rate
Isp1 = 280; Isp2=480; %stage wise specific impulse
Isp=Isp1;
ms1=20; %structural mass of first stage
x0=0; y0=0; %initial condition
t0=0; tf=10000; %time span
vx=vel*cosd(th_deg); %velocity along x
vy=vel*sind(th_deg); %velocity along y
beta=deg2rad(th_deg);%angle made by drag force with horizontal
%transforming second order differential equation to first order
%x'=u represented by fx
%u'=-(k/m)*(u^2+v^2)*cos(beta)+mdot*g*Isp*cos(beta)/m represented by fu
%y'=v represented by fy
%v'=-g-(k/m)*v*(u^2+v^2)*sin(beta) +mdot*g*Isp*sin(beta)/m represented by fv
fx=@(t,x,u) u;
fu=@(t,x,u,v)(-(k/m)*(u^2+v^2)*cos(beta)+(mdot*g*Isp*cos(beta))/m);
fy=@(t,y,v) v;
fv=@(t,y,u,v)(-g-(k/m)*(u^2+v^2)*sin(beta)+(mdot*g*Isp*sin(beta))/m);
t(1)=0;
x(1)=0;y(1)=0;
u(1)=vx;v(1)=vy;
h=0.01;
N=ceil((tf-t(1))/h);
for j=1:N
t(j+1)=t(j)+h;
k1x=fx(t(j),x(j),u(j));
k1y=fy(t(j),y(j),v(j));
k1u=fu(t(j),x(j),u(j),v(j));
k1v=fv(t(j),y(j),u(j),v(j));
k2x=fx(t(j)+h/2,x(j)+h/2*k1x,u(j)+h/2*k1u);
k2y=fy(t(j)+h/2,y(j)+h/2*k1y,v(j)+h/2*k1v);
k2u=fu(t(j)+h/2,x(j)+h/2*k1x,u(j)+h/2*k1u,v(j)+h/2*k1v);
k2v=fv(t(j)+h/2,y(j)+h/2*k1y,u(j)+h/2*k1u,v(j)+h/2*k1v);
k3x=fx(t(j)+h/2,x(j)+h/2*k2x,u(j)+h/2*k2u);
k3y=fy(t(j)+h/2,y(j)+h/2*k2y,v(j)+h/2*k2v);
k3u=fu(t(j)+h/2,x(j)+h/2*k2x,u(j)+h/2*k2u,v(j)+h/2*k2v);
k3v=fv(t(j)+h/2,y(j)+h/2*k2y,u(j)+h/2*k2u,v(j)+h/2*k2v);
k4x=fx(t(j)+h,x(j)+h*k3x,u(j)+h*k3u);
k4y=fy(t(j)+h,y(j)+h*k3y,v(j)+h*k3v);
k4u=fu(t(j)+h,x(j)+h*k3x,u(j)+h*k3u,v(j)+h*k3v);
k4v=fv(t(j)+h,y(j)+h*k3y,u(j)+h*k3u,v(j)+h*k3v);
x(j+1)=x(j)+h/6*(k1x+2*k2x+2*k3x+k4x);
y(j+1)=y(j)+h/6*(k1y+2*k2y+2*k3y+k4y);
u(j+1)=u(j)+h/6*(k1u+2*k2u+2*k3u+k4u);
v(j+1)=v(j)+h/6*(k1v+2*k2v+2*k3v+k4v);
m=m-mdot*h;
%condition for burn time for first stage
switch(t(j+1))
case 120
mdot=0;
m=m-ms1;%first stage separation
%no thrust phase
%second stage ignition
case 240
mdot=0.8;
Isp=Isp2;
%condition for burn time for second stage
case 360
mdot=0;
end
%Density variation with height
if(y(j+1)<=11000)
T=15.04 - .00649*y(j+1);
p=101.29*((T+273.1)/288.05)^5.256;
end
if(y(j+1)>11000 && y(j+1)<=25000)
T=-56.46;
p=22.65*exp(1.73-0.000157*y(j+1));
end
if(y(j+1)>25000)
T=-131.21+0.00299*y(j+1);
p=2.488*((T+273.1)/216.6)^(-11.388);
end
rho=p/(0.2869*(T+273.1));
k=0.5*rho*cd*S;
beta = atan(v(j+1)/u(j+1));
%condition to stop simulation when particle touches earth
if(y(j+1)<0)
break;
end
end
hmax = max(y);
rmax = max(x);
plot(x,y);
grid on;
xlabel('X');
ylabel('Y');
Akzeptierte Antwort
Walter Roberson
am 8 Aug. 2021
Your code assumes that if you add up enough 0.01 that the result will be an exact integer such as 120 or 240. However,
format long
t=0; for K = 1 : 12000; t = t + 0.01; end
t
t - 120
You might be thinking this is a bug, but it is normal.
MATLAB uses IEEE 754 double precision to store (most) numbers. IEEE 754 represents numbers as a 54 bit number, divided by 2 to a power. In order to represent 1/10th exactly, there would have to be some integers (P,Q) such that P/(2^Q) = 1/10 exactly. That would require that 10*P = 2^Q for integers P, Q -- there would have to be an integer multiple of 10 that exactly equalled 2 to a power. But other than 2^0 = 1, powers of 2 must end in a non-zero digit: 2, 4, 8, 6, 2, 4, 8, 6 and so no such P, Q exist.
Which is another way of saying that double precision cannot exactly represent 1/10, for the same reason that finite decimal cannot exactly represent 1/3 . 0.3333 + 0.3333 + 0.3333 = 0.9999 and 0.3334 + 0.3334 + 0.3334 = 1.0002 so you can see that if you try to represent 1/3 as 0. 3 repeated for any finite number of decimal places, or 0 . 3 repeated then final 4, then when you add three of them you cannot get exactly 1.0 back in decimal.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Logical finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!