Matrix Factorization In Matlab using Stochastic Gradient Descent
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have to factorize Matrix R[m*n] to two low-rank Matrices (U[K*m] and V[K*n]), I do this for predicting missing values of R by U and V.

The problem is, for factorizing R I can't use Matlab factorization methods, so I have to work on objective function which minimizes the sum-of-squared-errors for enhancing factorization accuracy:

details are shown below:

My Question in this post is how to minimize function F in Matlab Using Stochastic Gradient Descent method to decompose R into U and V matrices.
1 Kommentar
Matt J
am 7 Okt. 2013
Since your function is not continuous/differentiable (because I_ij is not), I wonder whether any kind of gradient method applies.
How large are R, U, ad V typically. You might be able to use the genetic algorithm ga() in the Global Optimization Toolbox.
Antworten (0)
Siehe auch
Kategorien
Mehr zu Get Started with MATLAB finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!