Extracting additional parameters from a model output
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
I have written the following code for a basic algae-phosphorous model. I want to extract the values of Pl (P limitation) to be used somewhere else. When I try to declare Pl as a global variable, it only returns a single value as opposed to an array for all the iterations. I would be very much grateful if I can have help in sorting this out.
Thanks in advance.
global mu M Ph RP SD K SR DR DD Pl
mu = 0.25; %maximum growth rate of phytoplankton (per day)
M = 0.2; % Mortality rate (per day)
Ph = 0.03; % Half saturation constant of P (umol/kg)
RP = 0.2/365;% river input (mmol per m2 per day)
SD = 500; %surface layer depth (m)
K = 3/365; %Mixing coefficient (m per day)
SR = 0.95; %shallow water P regeneration fraction
DR = 0.048; %deep water P regeneration fraction
DD = 3230; %deep layer depth (m)
V0 = [0.2; 0.1; 0.05];
tic
[t, V] = ode45(@func_p,[0 35000000],V0);
toc
plot(t,V,'-o','LineWidth',1,'MarkerSize',3)
hold on
xlim([1 35000000]);
ylabel('concentration (umol/kg)');
legend ('surface P','deep P','Algae');
xlabel('days')
grid on
function dvdt = func_p(t,V)
global mu M Ph RP SD K SR DR DD Pl;
Ps=V(1);
Pd=V(2);
A=V(3);
Pl = Ps/(Ps+Ph);
dPsdt = (RP/SD)+((K*(Pd-Ps))/SD) - (mu*Pl*A)+(M*SR*A);
dPddt = (M*DR*A*(SD/DD))-((K*(Pd-Ps))/DD) ;
dAdt = (mu*Pl-M)*A;
dvdt = [dPsdt; dPddt; dAdt];
end
0 Kommentare
Antworten (1)
Cris LaPierre
am 6 Aug. 2021
Global does not work because Pl only contains a single value at a time. You could try one of the solution in this answer, but I found it slow.
You have all the data you need to recalculate Pl yourself from V and Ph. Why not just do that?
Ps = V(:,1);
Pl = Ps./(Ps+Ph)
Here's an example
mu = 0.25; %maximum growth rate of phytoplankton (per day)
M = 0.2; % Mortality rate (per day)
Ph = 0.03; % Half saturation constant of P (umol/kg)
RP = 0.2/365;% river input (mmol per m2 per day)
SD = 500; %surface layer depth (m)
K = 3/365; %Mixing coefficient (m per day)
SR = 0.95; %shallow water P regeneration fraction
DR = 0.048; %deep water P regeneration fraction
DD = 3230; %deep layer depth (m)
V0 = [0.2; 0.1; 0.05];
[t, V] = ode45(@func_p,[0 35000000],V0,[],mu,M,Ph,RP,SD,K,SR,DR,DD);
Pl = V(:,1)./(V(:,1)+Ph)
plot(t,V,'-o','LineWidth',1,'MarkerSize',3)
xlim([1 35000000]);
ylabel('concentration (umol/kg)');
legend ('surface P','deep P','Algae');
xlabel('days')
grid on
function dvdt = func_p(t,V,mu,M,Ph,RP,SD,K,SR,DR,DD)
Ps=V(1);
Pd=V(2);
A=V(3);
Pl = Ps/(Ps+Ph);
dPsdt = (RP/SD)+((K*(Pd-Ps))/SD) - (mu*Pl*A)+(M*SR*A);
dPddt = (M*DR*A*(SD/DD))-((K*(Pd-Ps))/DD) ;
dAdt = (mu*Pl-M)*A;
dvdt = [dPsdt; dPddt; dAdt];
end
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!