2D ODE with constant? how to solve
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Akzeptierte Antwort
Sulaymon Eshkabilov
am 4 Aug. 2021
Most parts of your code is ok, but within the loop, you have overlooked sth and thus, you final solutions are not quite accurate. Here is ODE45 simulation which can be compared with your simulation results.
ICs=[0.6;0.6];
a=0.10;
b=10;
t=[0,60];
F = @(t, z)([a-z(1)+z(1).^2*z(2);b-z(1).^2*z(2)]);
OPTs = odeset('reltol', 1e-6, 'abstol', 1e-9);
[time, z]=ode45(F, t, ICs, OPTs);
figure(2)
plot(time,z(:,1),'b',time,z(:,2),'r')
xlabel('time')
ylabel('x(t) y(t)')
legend('x(t)', 'y(t)', 'location', 'best')
title('Schnackenberg eqn simulation'), xlim([0, 5])
figure(1)
plot(z(:,1),z(:,2),'k')
title('Simulation using ODE45'), grid on
xlabel('x(t)')
ylabel('y(t)')
0 Kommentare
Weitere Antworten (1)
Sulaymon Eshkabilov
am 4 Aug. 2021
Use odex (ode23, ode45, ode113, etc.) solvers. See this doc how to employ them in your exercise: https://www.mathworks.com/help/matlab/ref/ode45.html?searchHighlight=ode45&s_tid=srchtitle
1 Kommentar
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


