2D ODE with constant? how to solve

3 Ansichten (letzte 30 Tage)
mays rashad
mays rashad am 4 Aug. 2021

Akzeptierte Antwort

Sulaymon Eshkabilov
Sulaymon Eshkabilov am 4 Aug. 2021
Most parts of your code is ok, but within the loop, you have overlooked sth and thus, you final solutions are not quite accurate. Here is ODE45 simulation which can be compared with your simulation results.
ICs=[0.6;0.6];
a=0.10;
b=10;
t=[0,60];
F = @(t, z)([a-z(1)+z(1).^2*z(2);b-z(1).^2*z(2)]);
OPTs = odeset('reltol', 1e-6, 'abstol', 1e-9);
[time, z]=ode45(F, t, ICs, OPTs);
figure(2)
plot(time,z(:,1),'b',time,z(:,2),'r')
xlabel('time')
ylabel('x(t) y(t)')
legend('x(t)', 'y(t)', 'location', 'best')
title('Schnackenberg eqn simulation'), xlim([0, 5])
figure(1)
plot(z(:,1),z(:,2),'k')
title('Simulation using ODE45'), grid on
xlabel('x(t)')
ylabel('y(t)')

Weitere Antworten (1)

Sulaymon Eshkabilov
Sulaymon Eshkabilov am 4 Aug. 2021
Use odex (ode23, ode45, ode113, etc.) solvers. See this doc how to employ them in your exercise: https://www.mathworks.com/help/matlab/ref/ode45.html?searchHighlight=ode45&s_tid=srchtitle
  1 Kommentar
mays rashad
mays rashad am 4 Aug. 2021
Is this solution correct?
%x'=a-x+x^2y y'=b-x^2y
clear all,close all, clc
x(1)=0.6;
y(1)=0.6;
a=0.10;
b=10;
h=0.02;
t=0:h:60;
for i=1:(length(t)-1)
k1=h*(a-x(i)+y(i)*x(i)^2);
L1=h*(b-y(i)*x(i)^2);
k2=h*(a-(x(i)+k1/2)+(y(i)+L1/2)*(x(i)^2+k1/2));
L2=h*(b-(y(i)+L1/2)*(x(i)^2+k1/2));
k3=h*(a-(x(i)+k2/2)+(y(i)+L2/2)*(x(i)^2+k2/2));
L3=h*(b-(y(i)+L2/2)*(x(i)^2+k2/2));
k4=h*(a-(x(i)+k3)+(y(i)+L3)*(x(i)^2+k3));
L4=h*(b-(y(i)+L3)*(x(i)^2+k3));
x(i+1)=x(i)+(k1+2*k2+2*k3+k4)*(h/6);
y(i+1)=y(i)+(L1+2*L2+2*L3+L4)*(h/6);
end
plot(t,x,'b',t,y,'r')
xlabel('time')
ylabel('x in blue and y in red')
figure
plot(x,y,'g')
title('2D figure(RK4)')
xlabel('X')
ylabel('Y')

Melden Sie sich an, um zu kommentieren.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by