I need to fix the code by using for loop to plot the relative error E in 2 norm versus n.

2 Ansichten (letzte 30 Tage)
%%%% Taylor ploynomials pn(x)
x=2:0.01:3;
f = 1./x;
p1=1/2.5;
p2= 1/2.5 -(4/25)*(x-2.5);
p3= 1/2.5 -(4/25)*(x-2.5) + (8/125)*(x-2.5).^2;
p4= 1/2.5 -(4/25)*(x-2.5) + (8/125)*(x-2.5).^2 -(16/625)*(x-2.5).^3;
E1=sqrt((f-p1).^2)/sqrt((f).^2)
E2=sqrt((f-p2).^2)/sqrt((f).^2)
E3=sqrt((f-p3).^2)/sqrt((f).^2)
E4=sqrt((f-p4).^2)/sqrt((f).^2)
n=[1 2 3 4]
E=[ E1 E2 E3 E4];
semilogy(n,E)

Antworten (1)

Sivani Pentapati
Sivani Pentapati am 2 Sep. 2021
Please refer to the below code snippet to calculate the l2 norm of error in iterative way. For more information, please refer to for loop in MATLAB documentation.
p(1,:)=1/2.5;
for i=2:4
p(i,:)= p(i-1,:)+ (4/25)*(2/5).^(i-2)*(-1).^(i-1)*(x-2.5).^(i-1);
end
E=sqrt((f-p).^2)/sqrt((f).^2);
n=1:4;
semilogy(n,E);

Kategorien

Mehr zu Loops and Conditional Statements finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by