How can I use ODE45 continuously?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Heejun Lee
am 28 Jul. 2021
Bearbeitet: Chunru
am 28 Jul. 2021
This is the code I initially made.
[T,Y] = ode45(@hw,[0 100],[0.01 10]);
And this is function hw
//
function dy = hw(t,y)
D=0.01;
um=0.2;
Ks=0.05;
X0=0.01;
Sf=10;
dy = zeros(2,1);
dy(1) = -D*y(1) + (um*y(2))./(Ks+y(2))*y(1);
dy(2) = Sf * D - D*y(2) - (um*y(1)*y(2))./(0.4*(Ks+y(2)));
//
For this time I want to use D = 0.01 for t=0~50, and D =0.015 for t=50~100.
And value of X0, Sf for t=50~100 should be the value of X(which is y(1)), S(which is y(2)) at t=50.
How can I make this work?
0 Kommentare
Akzeptierte Antwort
Chunru
am 28 Jul. 2021
Bearbeitet: Chunru
am 28 Jul. 2021
Just change D depending on t. Run the solver over the whole time period.
[Update 2: Change the ode options, ie. smaller time step. Three methods gives similar results. It seems that default time step is not good enough for this problem. The branching seems cause no problem as well.]
opts = odeset('MaxStep', 0.001);
[T,Y] = ode45(@hw1,[0 100],[0.01 10], opts);
h(1)=subplot(131); plot(T, Y);
title('D=0.01');
[T,Y] = ode45(@hw,[0 100],[0.01 10], opts);
h(2)=subplot(132); plot(T, Y);
title('D: Branching');
[T1,Y1] = ode45(@hw1,[0 50],[0.01 10], opts);
[T2 Y2] = ode45(@hw2,[50+eps 100],Y1(end,:), opts);
T=[T1;T2]; Y=[Y1; Y2];
h(3)=subplot(133); plot(T, Y)
title('Two ODEs')
%linkaxes(h, 'xy')
function dy = hw(t,y)
%D=0.01;
if t<=50
D = 0.01;
else
D = 0.015;
end
um=0.2;
Ks=0.05;
X0=0.01;
Sf=10;
dy = zeros(2,1);
dy(1) = -D*y(1) + (um*y(2))./(Ks+y(2))*y(1);
dy(2) = Sf * D - D*y(2) - (um*y(1)*y(2))./(0.4*(Ks+y(2)));
end
function dy = hw1(t,y)
D = 0.01;
um=0.2;
Ks=0.05;
X0=0.01;
Sf=10;
dy = zeros(2,1);
dy(1) = -D*y(1) + (um*y(2))./(Ks+y(2))*y(1);
dy(2) = Sf * D - D*y(2) - (um*y(1)*y(2))./(0.4*(Ks+y(2)));
end
function dy = hw2(t,y)
D = 0.015;
um=0.2;
Ks=0.05;
X0=0.01;
Sf=10;
dy = zeros(2,1);
dy(1) = -D*y(1) + (um*y(2))./(Ks+y(2))*y(1);
dy(2) = Sf * D - D*y(2) - (um*y(1)*y(2))./(0.4*(Ks+y(2)));
end
3 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!