how to obtain the frequencies from the fft function
486 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
after the fft of the input signal,how to get the frequencies?
2 Kommentare
irem asci
am 6 Apr. 2020
I have 10 seconds of EEG recording that I have used fft on. How can I obtain the frequencies?
numberOfSamples = 20000
samplingRate = 2000
eegFile = readtable('Hit_0_EEG1.txt');
electrodeTimeSeries = eegFile.EEG1;
timeSeries = electrodeTimeSeries(1:numberOfSamples);
y = fft(timeSeries);
posFreq = y(1:(numberOfSamples/2));%
spec = abs(posFreq);
Matan Dor hai
am 29 Mai 2022
fs = 2000; % sample rate N = len(your_data); % 20000 in your case fshift = (-N/2:N/2-1)*(fs/N); Y = fftshift(fft(your_data); Y = abs(Y).^2 / N; plot(fshift,Y) % 2 sided fft
fshift = (0:N/2-1)*(fs/N); Yshift = Y(N/2+1:end); plot(fshift,Yshift) % right sided fft
Antworten (6)
dpb
am 30 Sep. 2013
Frequency is totally dependent upon the sample rate of the time signal and duration.
Sampling relationships --
Fmax=1/2dt; T=Ndt; df=Fmax/(N/2); T=1/df
0 Kommentare
Wayne King
am 30 Sep. 2013
Bearbeitet: Wayne King
am 7 Nov. 2013
dpb is correct, you can use that to create a meaningful frequency vector
For an even length signal, the most common interval is (-Fs/2, Fs/2]
Fs = 1000;
t = 0:1/Fs:1-0.001;
x = cos(2*pi*100*t)+randn(size(t));
xdft = fftshift(fft(x));
df = Fs/length(x);
freq = -Fs/2:df:Fs/2-df;
plot(freq,abs(xdft))
For an odd-length signal, it's common to have an open interval (-Fs/2,Fs/2) where the starting point is -Fs/2+ df/2 and the ending point is Fs/2-df/2
Fs = 1000;
t = 0:1/Fs:1;
x = cos(2*pi*100*t)+randn(size(t));
xdft = fftshift(fft(x));
df = Fs/length(x);
half_res = df/2;
freq = -Fs/2+half_res:df:Fs/2-half_res;
plot(freq,abs(xdft))
Of course for a real-valued signal, if you are only interested in magnitude, you only need 1/2 the frequency axis and magnitudes.
If you have the Signal Processing Toolbox, you can use periodogram to get a power spectrum or power spectral density estimate that will output a frequency vector for you.
1 Kommentar
Daniel
am 15 Dez. 2022
Are you sure the frequency order is not the following? Not sure why Matlab does not include this in the documentation.
freq = Fs/N*[(0:N/2) -1*((N/2-1):-1:1)]
Daniel Frisch
am 12 Nov. 2020
easyFFT is not part of Matlab itself, but you have to download it and put the path where it is located to Matlab's path, for example using the addpath() function.
I also helped you with PCA. You have to differentiate between the PCA vector (coeff) in the 3D multivariate space, and the time signals in x,y,z data(:,2:4) or the time signals in the PCA base system, score.
addpath('path/to/folder/of/easyFFT.m')
% Generate random data
L = 1000;
Fs = 5000;
t = (1:L)'/Fs;
f = 200;
data = [ t, sin(2*pi*f*t), cos(2*pi*f*t), t*0];
data(:,2:4) = data(:,2:4) + randn(size(data(:,2:4)))*.1; % add some noise
% Extract data
t = data(:,1);
L = size(data,1);
Accel = data(:,2:4);
% Perform PCA
[coeff,score,latent] = pca(Accel); % need to identify the dominant tremor axis of the 3D accelerometer
% Plot multivariate data in 3D
figure()
plot3([zeros(1,3);(coeff(:,1).*sqrt(latent))'], [zeros(1,3);(coeff(:,2).*sqrt(latent))'], [zeros(1,3);(coeff(:,3).*sqrt(latent))'], 'DisplayName','PCA Base')
hold on
scatter3(data(:,2), data(:,3), data(:,4), 'DisplayName','Data')
axis equal
xlabel('x'), ylabel('y'), zlabel('z')
legend;
% Plot time data, separate for each PCA axes
figure();
plot(t,score, 'DisplayName','Accel along PCA axes');
% 1D Time signal along most dominant tremor axis
score1 = score(:,1); % extract signal projected on most dominant tremor axis coef(:,1)
[Y,f] = easyFFT( score1, length(score1), 1, Fs );
figure();
plot(f, abs(Y), 'DisplayName','Dominant Tremor FFT');
7 Kommentare
Daniel Frisch
am 13 Nov. 2020
I'm not sure, maybe download easyFFT again, make sure you use Matlab R2020b, and otherwise send me a working example to daniel.frisch\at\posteo.de.
KR
am 15 Nov. 2020
Thanks, Daniel. Re-downloading easyFFT resolved the issue. Thanks again for all of your help!
Daniel Frisch
am 31 Aug. 2020
You can use my little tool easyFFT. It automatically calculates the frequency vector in addition to the FFT.
2 Kommentare
KR
am 12 Nov. 2020
Hi Daniel,
Do you mind identifying my error in using your easyFFT function? Please note that I need to perform the easyFFT on the first component derived from pca (which I haven't been able to work yet).
data = table2array(acceler);
t = data(:,1);
L = size(data,1);
Accel = data(:,2);
Fs = 5000;
Fn = Fs/2;
coeff = pca(Accel); %need to identify the dominant tremor axis of the 3D accelerometer
figure()
plot(pca(Accel))
legend({'X';'Y';'Z'})
[Y,f] = easyFFT(Accel); %error states 'undefined function or variable 'easyFFT'
Daniel Frisch
am 13 Okt. 2021
Hi, the "undefined function or variable" error means that the function is not on the path. Either put the file easyFFT.m in your current folder, or add the folder containing it via the addpath() function.
Mark Newman
am 16 Mai 2022
The FFT gives you a list of results. Each item in the list represents a sinusoid with a different frequency. The position of each item in the list tells you its frequency. See the following video for more details: https://www.youtube.com/watch?v=3aOaUv3s8RY
0 Kommentare
Siehe auch
Kategorien
Mehr zu Measurements and Feature Extraction finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!