how to using fitcknn instead of knnclassify?
14 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
can someone help me to solve this
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/694929/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/694934/image.png)
0 Kommentare
Antworten (1)
Ganesh
am 14 Jun. 2024
To use the "fitcknn" in place of "knnclassify" you would have to follow the same procudure as using "knnclassify()", except, you are now training a "model" instead of directly predicting the results. The added advantage to this is that, your model can now be used to predict on unknown data sets too. As a final step after training the model, you have to use the "predict()" function to predict the values on your test dataset. The following code has been modified to accomodate "fitcknn" in place of "knnclassify".
data{1,3} = num2str(RangeR); data{2,3} = num2str(RangeG); data{3,3} = num2str(RangeB); data{4,3} = num2str(RangeH); data{5,3} = num2str(RangeS); data{6,3} = num2str(RangeI);
set(handles.uitable2, 'Data', data, 'ForegroundColor', [0 0 0]);
training1 = xlsread('Data Training');
group = training1(:, 25);
training = training1(:, 1:9);
Z = [MeanR MeanG MeanB MeanH MeanS MeanI VarRed VarGreen VarBlue VarH VarS VarI RangeR RangeG RangeB RangeH RangeS RangeI];
Mdl = fitcknn(training, group, 'NumNeighbors', 3); % example using 3 neighbors, adjust as needed
hasil1 = predict(Mdl, Z);
if hasil1 == 1
x = 'MATURE';
elseif hasil1 == 2
x = 'HALF-MATURE';
elseif hasil1 == 3
x = 'IMMATURE';
end
set(handles.edit2, 'string', x);
You may refer to the documentation below for more information on the mentioned functions:
Hope this helps!
0 Kommentare
Siehe auch
Kategorien
Mehr zu Time Series finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!