Is there a way to use weights without using gpuArray

7 Ansichten (letzte 30 Tage)
Marina Ghobrial
Marina Ghobrial am 25 Jul. 2021
Kommentiert: Marina Ghobrial am 27 Jul. 2021
I found this code online and was wondering if there is another way to use it without the gpuArray function. I keep recieving this error when I use it and I am not familiar with gpu:
Error using gpuArray
Failed to load graphics driver. Unable to load library 'nvcuda.dll'. The error was:
The specified module could not be found.
Update or reinstall your graphics driver. For more information on GPU support, see GPU Support by Release.
varSize = 21;
conv1 = convolution2dLayer(5,varSize,'Padding',2,'BiasLearnRateFactor',2);
conv1.Weights = gpuArray(single(randn([5 5 3 varSize])*0.0001));
fc1 = fullyConnectedLayer(64,'BiasLearnRateFactor',2);
fc1.Weights = gpuArray(single(randn([64 576])*0.1));
fc2 = fullyConnectedLayer(4,'BiasLearnRateFactor',2);
fc2.Weights = gpuArray(single(randn([4 64])*0.1));
i want to be able to use convulation neural network and be able to use the weights because I know they help the progrma run faster. so my question is: Is there a way to use weights without using gpuArray?
Thank you
  4 Kommentare
Walter Roberson
Walter Roberson am 25 Jul. 2021
varSize = 21;
gpuArray = @(x) x;
conv1 = convolution2dLayer(5,varSize,'Padding',2,'BiasLearnRateFactor',2);
conv1.Weights = gpuArray(single(randn([5 5 3 varSize])*0.0001));
fc1 = fullyConnectedLayer(576,'BiasLearnRateFactor',2);
fc1.Weights = gpuArray(single(randn([576, 64])*0.1));
fc2 = fullyConnectedLayer(4,'BiasLearnRateFactor',2);
fc2.Weights = gpuArray(single(randn([4 64])*0.1))
fc2 =
FullyConnectedLayer with properties: Name: '' Hyperparameters InputSize: 64 OutputSize: 4 Learnable Parameters Weights: [4×64 single] Bias: [] Show all properties
fc1
fc1 =
FullyConnectedLayer with properties: Name: '' Hyperparameters InputSize: 64 OutputSize: 576 Learnable Parameters Weights: [576×64 single] Bias: [] Show all properties
fc2
fc2 =
FullyConnectedLayer with properties: Name: '' Hyperparameters InputSize: 64 OutputSize: 4 Learnable Parameters Weights: [4×64 single] Bias: [] Show all properties
Marina Ghobrial
Marina Ghobrial am 27 Jul. 2021
It worked! Thank you so much for all your help!

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Kategorien

Mehr zu GPU Computing finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by