MATLAB Neural Network - Forward Propagation
7 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Erica Dos Santos Saraiva
am 24 Jul. 2021
Kommentiert: Erica Dos Santos Saraiva
am 28 Jul. 2021
I am trying to implement a forward propogation with a foor loop as advices on neural smithing. I keep recieveing an error when iterating through my for loop. How do I get rid of this error.
I have checked the sizes for both NOUTPUTS(i+1) and NPATS(i) which both are = 1 however keep receiving this error.
Patterns = x'; Desired = y; NHIDDENS = 1; prnout=Desired;
% Patterns become x so number of inputs becomes size of patterns
[NINPUTS,NPATS] = size(Patterns); [NOUTPUTS,NP] = size(Desired);
%apply the backprop here...
LearnRate = 0.15; Momentum = 0; DerivIncr = 0; deltaW1 = 0; deltaW2 = 0;
% Keeps the tan ordering of the examples of x
Inputs1= [Patterns;ones(1,NPATS)]; %Inputs1 = [ones(1,NPATS); Patterns];
% Weight initialisation
Weights1 = 0.5*(rand(NHIDDENS,1+NINPUTS)-0.5);
Weights2 = 0.5*(rand(1,1+NHIDDENS)-0.5);
TSS_Limit = 0.02;
for epoch = 1:10
% FORWARD LOOP
size(NOUTPUTS)
size(NPATS)
for ii = 0: ii < length(NINPUTS)
NOUTPUTS(ii+1) = NPATS(ii);
% Sets bias to 1
NOUTPUTS(1) = 1;
end
for ii = NHIDDENS: ii < NINPUTS
sum = 0;
for ij = 0: ij < ii
sum = sum + deltaW1(ii,ij) * NOUTPUTS(ij);
NOUTPUTS(ii) = tanh(sum);
end
end
Unable to perform assignment because the
left and right sides have a different
number of elements.
Error in mlpts (line 66)
NOUTPUTS(i+1) = NPATS(i);
0 Kommentare
Antworten (1)
Swetha Polemoni
am 27 Jul. 2021
Hi,
You might want to check on the format of for loops you have used(for ii = 0: ii < length(NINPUTS)). This can be replaced with following code snippet.
ii = intial value;
while condition
end
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!